Produkte zum Begriff Deterministic:
-
Statistics, Data Analysis, and Decision Modeling
For undergraduate and graduate level courses that combines introductory statistics with data analysis or decision modeling. A pragmatic approach to statistics, data analysis and decision modeling. Statistics, Data Analysis & Decision Modeling focuses on the practical understanding of its topics, allowing readers to develop conceptual insight on fundamental techniques and theories. Evans’ dedication to present material in a simple and straightforward fashion is ideal for student comprehension. The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.
Preis: 53.49 € | Versand*: 0 € -
Quantitative Analysis for Decision Makers
There's no doubt that a manager's job is getting tougher. Do it better, do it faster, do it cheaper are the pressures every manager faces. And at the heart of every manager's job is decision-making: deciding what to do and how to do it. This well-respected text looks at how quantitative analysis techniques can be used effectively to support such decision making. As a manager, developing a good understanding of the quantitative analysis techniques at your disposal is crucial. Knowing how, and when, to use them and what their results really mean can be the difference between making a good or bad decision and, ultimately, between business success and failure. Appealing both to students on introductory-level courses and to MBA and postgraduate students, this internationally successful text provides an accessible introduction to a subject area that students often find difficult. Quantitative Analysis for Decision Makers (formerly known as Quantitative Methods for Decision Makers) helps students to understand the relevance of quantitative methods of analysis to management decision-making by relating techniques directly to real-life business decisions in public and private sector organisations and focuses on developing appropriate skills and understanding of how the techniques fit into the wider management process. The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.
Preis: 53.49 € | Versand*: 0 € -
Foundations of Decision Analysis, Global Edition
For courses in Decision Making and Engineering. The Fundamentals of Analyzing and Making Decisions Foundations of Decision Analysis is a groundbreaking text that explores the art of decision making, both in life and in professional settings. By exploring themes such as dealing with uncertainty and understanding the distinction between a decision and its outcome, the First Edition teaches students to achieve clarity of action in any situation. The book treats decision making as an evolutionary process from a scientific standpoint. Strategic decision-making analysis is presented as a tool to help students understand, discuss, and settle on important life choices. Through this text, students will understand the specific thought process that occurs behind approaching any decision to make easier and better life choices for themselves. The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.
Preis: 47.07 € | Versand*: 0 € -
Julia for Data Analysis
Master core data analysis skills using Julia. Julia for Data Analysis is a fascinating, hands-on projects guide you through time series data, predictive models, popularity ranking, and more. With this book, you will learn how to: Read and write data in various formats Work with tabular data, including subsetting, grouping, and transforming Visualise your data using plots Perform statistical analysis Build predictive models Create complex data processing pipelines Julia was designed for the unique needs of data scientists: it's expressive and easy-to-use whilst also delivering super fast code execution. Julia for Data Analysis teaches you how to perform core data science tasks with this amazing language. It is written by Bogumi Kamiski, a top contributor to Julia, #1 Julia answerer on StackOverflow, and a lead developer of Julia's core data package DataFrames.jl. You will learn how to write production-quality code in Julia, and utilize Julia's core features for data gathering, visualisation, and working with data frames. Plus, the engaging hands-on projects get you into the action quickly. About the technology Julia is a huge step forward for data science and scientific computing. It is a powerful high-performance programming language with many developer-friendly features like garbage collection, dynamic typing, just-in-time compilation, and a flexible approach to concurrent, parallel, and distributed computing. Although Julia's strong numerical programming features make it a favorite of data scientists, it is also an awesome general purpose programming language. About the reader For data scientists familiar with Python or R. No experience with Julia required.
Preis: 56.7 € | Versand*: 0 €
-
Was ist mit Zuständen eines DFA (Deterministic Finite Automaton) in der Mathematik und Informatik gemeint?
Zustände eines DFA sind die verschiedenen Zustände, in denen sich der Automat während der Verarbeitung einer Eingabe befinden kann. Jeder Zustand repräsentiert einen bestimmten Zustand des Automaten und kann entweder akzeptierend oder nicht-akzeptierend sein. Der Automat wechselt zwischen den Zuständen basierend auf den Eingabesymbolen, die er erhält.
-
Was bedeutet bei Mercedes Blue Efficiency? - Was bedeutet bei Mercedes Blue Efficiency?
Was bedeutet bei Mercedes Blue Efficiency? - Blue Efficiency ist ein Konzept von Mercedes-Benz, das darauf abzielt, die Umweltverträglichkeit und Effizienz ihrer Fahrzeuge zu verbessern. Dies wird durch verschiedene Maßnahmen erreicht, wie z.B. die Verwendung von effizienten Motoren, Leichtbauweise, aerodynamisches Design und die Reduzierung von Emissionen. Das Ziel ist es, den Kraftstoffverbrauch zu senken und die CO2-Emissionen zu reduzieren, um umweltfreundlichere Fahrzeuge anzubieten. Durch Blue Efficiency möchte Mercedes-Benz einen Beitrag zum Umweltschutz leisten und gleichzeitig die Leistung und den Komfort ihrer Fahrzeuge aufrechterhalten.
-
Wann wird "decide" zu "decision"?
"Decide" wird zu "decision", wenn die Handlung des Entscheidens abgeschlossen ist und zu einem endgültigen Ergebnis geführt hat. Eine "decision" ist die getroffene Wahl oder der gefasste Entschluss, der eine Handlung oder einen Kurs festlegt.
-
Was ist eine Sprungvorhersage (branch prediction)?
Eine Sprungvorhersage (branch prediction) ist eine Technik in der Computerarchitektur, die versucht, den Ausgang von bedingten Sprüngen in einem Programm vorherzusagen. Dies geschieht, um die Verzögerungen zu minimieren, die durch das Warten auf die tatsächliche Auswertung des Sprungs verursacht werden. Die Vorhersage basiert auf statistischen Mustern und historischen Informationen über das Verhalten des Programms.
Ähnliche Suchbegriffe für Deterministic:
-
Data Analysis with Python and PySpark
When it comes to data analytics, it pays tothink big. PySpark blends the powerful Spark big data processing engine withthe Python programming language to provide a data analysis platform that can scaleup for nearly any task. Data Analysis with Python and PySpark is yourguide to delivering successful Python-driven data projects.Data Analysis with Python and PySpark is a carefully engineered tutorial that helps you use PySpark to deliver your data-driven applications at any scale. This clear and hands-on guide shows you how to enlarge your processing capabilities across multiple machines with data from any source, ranging from Had oop-based clusters to Excel worksheets. You'll learn how to break down big analysis tasks into manageable chunks and how to choose and use the best PySpark data abstraction for your unique needs.The Spark data processing engine is an amazing analytics factory: raw data comes in,and insight comes out. Thanks to its ability to handle massive amounts of data distributed across a cluster, Spark has been adopted as standard by organizations both big and small. PySpark, which wraps the core Spark engine with a Python-based API, puts Spark-based data pipelines in the hands of programmers and data scientists working with the Python programming language. PySpark simplifies Spark's steep learning curve, and provides a seamless bridge between Spark and an ecosystem of Python-based data science tools.
Preis: 55.63 € | Versand*: 0 € -
Pandas for Everyone: Python Data Analysis
The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export dataCreate plots with matplotlib, seaborn, and pandasCombine datasets and handle missing dataReshape, tidy, and clean datasets so they’re easier to work withConvert data types and manipulate text stringsApply functions to scale data manipulationsAggregate, transform, and filter large datasets with groupbyLeverage Pandas’ advanced date and time capabilitiesFit linear models using statsmodels and scikit-learn librariesUse generalized linear modeling to fit models with different response variablesCompare multiple models to select the “best”Regularize to overcome overfitting and improve performanceUse clustering in unsupervised machine learning
Preis: 32.09 € | Versand*: 0 € -
Pandas for Everyone: Python Data Analysis
The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export dataCreate plots with matplotlib, seaborn, and pandasCombine datasets and handle missing dataReshape, tidy, and clean datasets so they’re easier to work withConvert data types and manipulate text stringsApply functions to scale data manipulationsAggregate, transform, and filter large datasets with groupbyLeverage Pandas’ advanced date and time capabilitiesFit linear models using statsmodels and scikit-learn librariesUse generalized linear modeling to fit models with different response variablesCompare multiple models to select the “best”Regularize to overcome overfitting and improve performanceUse clustering in unsupervised machine learning
Preis: 32.09 € | Versand*: 0 € -
Pandas for Everyone: Python Data Analysis
Manage and Automate Data Analysis with Pandas in PythonToday, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple data sets.Pandas for Everyone, 2nd Edition, brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world data science problems such as using regularization to prevent data overfitting, or when to use unsupervised machine learning methods to find the underlying structure in a data set.New features to the second edition include: Extended coverage of plotting and the seaborn data visualization libraryExpanded examples and resourcesUpdated Python 3.9 code and packages coverage, including statsmodels and scikit-learn librariesOnline bonus material on geopandas, Dask, and creating interactive graphics with AltairChen gives you a jumpstart on using Pandas with a realistic data set and covers combining data sets, handling missing data, and structuring data sets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes.Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export dataCreate plots with matplotlib, seaborn, and pandasCombine data sets and handle missing dataReshape, tidy, and clean data sets so they’re easier to work withConvert data types and manipulate text stringsApply functions to scale data manipulationsAggregate, transform, and filter large data sets with groupbyLeverage Pandas’ advanced date and time capabilitiesFit linear models using statsmodels and scikit-learn librariesUse generalized linear modeling to fit models with different response variablesCompare multiple models to select the “best” oneRegularize to overcome overfitting and improve performanceUse clustering in unsupervised machine learning
Preis: 37.44 € | Versand*: 0 €
-
Wie kann man in Minecraft Texturen mithilfe von Custom Model Data verwenden?
Um Texturen mithilfe von Custom Model Data in Minecraft zu verwenden, musst du zuerst eine Textur erstellen und sie in das Spiel importieren. Dann musst du ein benutzerdefiniertes Modell erstellen und das Custom Model Data-Tag verwenden, um die Textur auf das Modell anzuwenden. Schließlich musst du das Modell in das Spiel importieren und es mit dem entsprechenden Block oder Gegenstand verknüpfen.
-
Wie funktioniert Search Engine Optimization?
Search Engine Optimization (SEO) ist der Prozess, bei dem die Sichtbarkeit einer Website in den organischen Suchergebnissen von Suchmaschinen verbessert wird. Dies geschieht durch die Optimierung von Inhalten, Meta-Tags, Keywords und Backlinks, um die Relevanz und Autorität der Website zu steigern. Suchmaschinen wie Google verwenden komplexe Algorithmen, um Websites zu bewerten und zu ranken, basierend auf verschiedenen Faktoren wie Qualität des Inhalts, Benutzererfahrung und technischer Optimierung. Durch die Implementierung von SEO-Strategien können Websites höher in den Suchergebnissen erscheinen und so mehr organischen Traffic generieren. Es ist wichtig, kontinuierlich SEO zu betreiben, da sich die Algorithmen der Suchmaschinen ständig ändern und die Konkurrenz in den Suchergebnissen hoch ist.
-
Was bedeuten Data Science und Data Engineering?
Data Science bezieht sich auf die Analyse und Interpretation von Daten, um Erkenntnisse und Muster zu gewinnen, die bei der Lösung von Problemen und der Unterstützung von Entscheidungsprozessen helfen. Data Engineering hingegen bezieht sich auf die Entwicklung und Verwaltung von Dateninfrastrukturen, um sicherzustellen, dass Daten effizient erfasst, gespeichert, verarbeitet und analysiert werden können. Data Engineering legt den Fokus auf die technische Seite der Datenverarbeitung, während Data Science sich auf die Analyse und Interpretation der Daten konzentriert.
-
Was ist die Sprungvorhersage bei der Branch Prediction im PC?
Die Sprungvorhersage bei der Branch Prediction im PC ist ein Mechanismus, der versucht, den Ausgang eines bedingten Sprungs im Programmcode vorherzusagen. Dies ermöglicht es dem Prozessor, vorzeitig mit der Ausführung des nächsten Befehls zu beginnen, anstatt auf das Ergebnis des Sprungs zu warten. Dadurch kann die Leistung des Prozessors verbessert werden, da weniger Wartezeiten entstehen.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.